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A jet of fluid flowing down a partially wetting inclined plane usually meanders. In
this paper, we demonstrate that meandering on a smooth plane can be suppressed by
maintaining a constant volume flow rate. In the absence of meandering, we experi-
mentally observe the jet developing a braided structure with non-monotonic width.
This flow pattern is theoretically explained as the result of the interplay between
surface tension that tends to narrow the jet down and fluid inertia that drives the jet
width to expand. The theory also predicts a bifurcation between the braiding regime
and a non-meandering non-braiding flow, which is confirmed by experiment.

1. Introduction
In this paper, we address the question of surface tension versus boundary interac-

tions in the determination of how fluid flows down inclined planes. The five dimen-
sional parameters of relevance for this problem are the fluid kinematic viscosity ν,
flow rate Q, coefficient of surface tension γ , density ρ, and the component of the
acceleration due to gravity in the direction of the flow g sin α, where α is the angle
of inclination of the plane (measured from the horizontal). Another relevant quantity
is the contact angle between the fluid and the surface. It can be interpreted as a
quantitative measure of the wetting properties of the surface, from which the extent
of interaction at the solid–fluid boundary can be inferred. This interaction enters our
model through the value of contact angle which is taken as an adjustable parameter.
Indeed, although the contact angle is known to be a varying and fairly complex
quantity (deGennes 1985), here it is assumed to have a constant value for the specific
pairing of substrate and fluid used in our experiments.

The simplicity of this approximation notwithstanding, we observe it to lead to results
quantitatively and qualitatively consistent with our experiments. These experiments
reveal the following. It is possible to suppress both secondary instabilities due to
surface effects (i.e. roughness), and the initial meandering instability of the flow (which
is attributed to variation in the flow rate Q). In the absence of these instabilities, a
beautiful stationary braiding pattern forms in the downstream flow. Earlier it had been
believed that such flows were unattainable, as meandering was thought to dominate
every sufficiently slow flow (Nakagawa & Scott 1984). In our experiment, however,
we produced a controlled environment where the initial meandering instability can be
suppressed, thus facilitating observation of stationary flows and accurate prediction
of their properties. Moreover, flows manifesting this braiding pattern can be observed
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Figure 1. A snapshot of water running down an inclined rock in the Sandia Mountain
foothills, New Mexico. Note three isolated narrow streams of water, the width variation most
apparent in the central stream.

in nature (figure 1). An example of a natural flow with a highly constant flow rate that
can exhibit braiding is a thin stream of water seeping through a narrow, sand-filled
crack from a relatively large upstream reservoir and falling on a flat rock.

Note that braiding here is not to be confused with river braiding which albeit
similar in appearance, is caused by a different physical phenomenon, namely erosion
(Ikeda, Parker & Sawai 1981), which is outside the scope of phenomena we consider
here.

2. Experimental observations
Our experimental apparatus is comprised of a flat acrylic sheet (40 cm by 120 cm)

mounted on a horizontal pivot, facilitating changes in the angle of inclination α

between the horizontal and the plane of the sheet. A cylindrical reservoir 1.5 m tall,
12 cm in diameter, is mounted above the sheet. Several nozzles with diameters varying
from 0.05 cm to 0.3 cm can be connected to the bottom part of the reservoir via
flexible tubing. Due to the size and height of the reservoir, fluctuations in the flow
rate from the nozzle are very small. The nozzle is positioned 1 cm above the plane
of the acrylic sheet, to suppress possible jet instabilities. The fluid in the reservoir is
maintained at a constant level by a peristaltic pump. The pump recirculates the fluid
captured in a bottom reservoir mounted below the acrylic sheet. This arrangement
can sustain a nearly constant flow rate indefinitely (not taking evaporation losses
into consideration). The recirculating fluid is a mixture of water and glycerol with
trace amounts of food colouring. Its viscosity ν can be varied between 1 and 5 cSt
by variation of the water–glycerol ratio. After the recirculating flow is established,
it undergoes a period of stabilization, lasting from several minutes to half an hour,
which can probably be attributed to the time necessary for disturbances to decay
beyond a certain value in the fluid in the upper reservoir. At the end of this period,
a stationary non-meandering flow pattern emerges (figure 2). For many values of the
flow parameters, this stationary pattern varies in width and height (braiding), which
can be explained thus.
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Figure 2. Stationary patterns observed in experiment. Flow direction (and the slope of the
plane) is from left to right, scale is shown in cm. (a) Braiding pattern. Inset shows injection of
red dye demonstrating the bounce of the flow near the edge of the stream (see text). Parameter
values are: volume flux q = 12.2 cm3 s−1, inclination angle α = 45◦, viscosity ν = 0.016 cm2 s−1.
(b) Non-braiding flow (rivulet) observed with q = 2 cm3 s−1, α = 20◦, ν = 0.046 cm2 s−1.

When the fluid jet discharged from the nozzle strikes the inclined surface, it spreads
out due to the inertia of the impact. Most of the fluid is flowing at the outer boundaries
of the flow with the interior of the stream being very shallow. Surface tension limits
the extent of the spreading and begins to bring the outer boundaries of the flow
back together. However, in the process of contraction due to surface tension, the
outer edges, carrying most of the fluid, accelerate beyond equilibrium and bounce on
impact, as dye injection visualization reveals in figure 2 (a, inset). The boundaries are
forced outwards, then collapse again due to surface tension and the process repeats.

This structure is visually reminiscent of the fluid chain structure recently observed
by Hasha & Bush (2004) when two fluid jets collide in air at an oblique angle.
The amplitude of the subsequent bounces decreases due to viscous dissipation,
and far enough downstream the flow assumes a simple profile with a part-circular
cross-section, when the surface tension, viscosity and gravity are in balance. The
complete solution describing the rivulet of constant width and downstream-distance-
independent velocity has only been obtained recently by Perazzo & Gratton (2004).

The issue of the stability of the non-meandering flow pattern will be fully addressed
in our next paper on the subject. We conducted some preliminary experiments with
acoustic excitation of the flow in the vicinity of the nozzle. The braiding pattern
stability is apparently dependent on the volume flux, with more power required to
destabilize higher-flux flows. The frequency of the excitation also plays a role. For
the flow with volume flux q = 11 cm3 s−1 and kinematic viscosity ν = 0.014 cm2 s−1,
a 300 Hz harmonic signal from a 20 W speaker causes the flow to meander, if the
speaker diaphragm is 4 cm away from the nozzle. Under the same conditions, a
3000 Hz signal produces no apparent effect. When the excitation is removed, the
stationary braided pattern re-establishes itself in the matter of minutes.
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3. Theory
By using a few basic approximations, and by exploiting some a priori knowledge

of the system geometry gained from experiment, we can reduce the Navier–Stokes
equations governing the system described in the previous section to a coupled set
of ordinary differential equations (ODEs). Consider a Cartesian coordinate system
with the (x, y)-plane corresponding to the inclined surface, where the (x, z)-plane
is the plane of symmetry of the flow. Let the width of the stream in the y-
direction be w(x) and the free surface height in the z-direction be h(x, y). Let us
also assume that the x-component of the velocity Ux dominates the flow. Previous
works (Weiland & Davis 1981; Young & Davis 1987) attempted to describe such
flows using long-wavelength approximations, but did not capture the large-amplitude
variations observed in experiment.

3.1. Height function

What would be a suitable polynomial approximation for the height function h(x, y)
given our knowledge of the flow morphology? The flow is symmetric with respect to
the (x, z)-plane. In the braided regime, h can have two local maxima near the edges
of the flow when the braids are spread out or one local maximum when they come
together. Let us approximate this behaviour by a fourth-order polynomial of the form

h(x, y) = (w2 − y2)(a − by2), (3.1)

where the x-dependence is contained in w and parameters a and b are determined
by the flow conditions. Parameter a should be positive to ensure positive h(0). To
find a and b, let us first examine the flow rate q . If the Ux velocity component is
predominant, let it be independent of y. Then the flow rate in the x-direction at any
given x is

Q = Ux

∫ w

0

h(x, y) dy = const, (3.2)

where the integral represents the average area per half-braid and the corresponding
flow rate Q = q/2. This notation uses the symmetry of the flow to simplify the
calculations that follow. We will refer to (3.2) as the flux condition.

Second, let us assume that the contact angle θ between the free surface and the
plane is constant. If the variation in the free surface width and height with x is
moderate, this condition can be approximated as

dh(±w)

dy
= ∓ tan θ. (3.3)

By differentiating (3.1) and combining it with (3.3), we obtain

a =
tan θ

2w
+ bw2. (3.4)

Now we can find b by substituting (3.1) and (3.4) into the flux condition (3.2), integrate
the latter and solve the result for b:

b =
15

8w5

(
Q

Uy

− tan θw2

3

)
. (3.5)

The capillary force can be represented as f (y) = h′′′(y) = 24γ by for a given x. With
this taken into consideration, we can compute the average capillary force acting on
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the half-braid as

F =

∫ w

0

h(y)f (y) dy.

Evaluation of this integral produces

F = 3bγ tan θw3 + 4γ b2w6 = γF∗, (3.6)

where F∗ is dimensionless. It is now possible to write the equations of motion.

3.2. Equations of motion

Let us begin with the boundary layer approximation in the direction parallel to the
plane:

U · ∇U =
1

ρ
∇p + g sin αêx + ν

∂2U
∂z2

,

where êx is the unit vector in the streamwise direction, and ν is kinematic viscosity.
U and ∇ in this equation are three-dimensional, but only the x, y components of
the equation are considered. This equation is complemented by the incompressibility
condition div U = 0.

Hydrostatic pressure and the contribution of surface tension are combined in
pressure p. In the following analysis we consider only the surface tension contribution,
as the role of the hydrostatic term is limited by the shallowness of the flow: a
conservative estimate for our experiment shows a 1 : 5 ratio between the hydrostatic
and surface tension forces. The viability of this simplification is confirmed by
comparison with experiment described in § 3.4. Inclusion of the hydrostatic term
in the analysis procedure similar to that outlined below would be straightforward,
were it necessitated by different flow conditions, e.g. a greatly increased flow rate.

The reduced equations of motion are obtained using integral methods (see Bohr,
Putkaradze & Watanabe 1997; Lopez, Miksis & Bankoff 1997; Watanabe, Putkaradze
& Bohr 2003). The equations of motion are integrated in the y-direction from 0 to
w and in the z-direction from 0 to h, with the kinematic and dynamic boundary
conditions on the free surface taken into account. The total y-integrated inertial term
in direction i (i being x or y) is (∂/∂y)(ρAUxUi), where A is the area per half-braid.
Conservation of flux UxA=Q allows us to rewrite the equations of motion as

ρAUx

(
∂

∂x
Uy

)
= F − µA

1

h

∂Uy

∂z

∣∣∣∣
z=0

, (3.7)

Ux

∂Ux

∂x
= g sin α − ν

1

h

∂Ux

∂z

∣∣∣∣
z=0

, (3.8)

where µ = νρ is dynamic viscosity, g sin α is the component of acceleration due to
gravity in the downstream direction, and F represents the average capillary force
per half-braid (equation (3.6)) as an explicit rational function of Ux and w. These
partial differential equations including velocity components Ux and Uy can be further
simplified by making reasonable assumptions about the behaviour of the flow in the
z-direction.

3.3. Lubrication approximation

To simplify the velocity derivatives in (3.7), (3.8), let us use the lubrication approxi-
mation, assuming that the free surface height h(x, y) is much smaller than the
characteristic scale in the x-direction. Let us consider a velocity profile in the z-
direction Ux(z), such that the velocity is zero at z =0 (no-slip condition), and there is



54 K. Mertens, V. Putkaradze and P. Vorobieff

no shear on the free surface ([dUx(z)/dz]z=h =0). Both conditions will be satisfied if
a parabolic velocity profile is chosen:

Ux(z) = Us

(
2
z

h
−

(
z

h

)2)
.

By differentiating, we obtain

−1

h

∂Ux(z)

∂z

∣∣∣∣
z=0

= −2
Us

h2
.

We can approximate the constant Us in the z-direction velocity profile by considering
Ux as the average of Ux(z) with z-dependence integrated out:

1

h

∫ h

0

Ux(z) dz = Ux.

Thus Us = 3/2Ux and we can write

−1

h

∂Ux

∂z

∣∣∣∣
z=0

= −3
Ux

h2
. (3.9)

Now we can also relate Ux and Uy using continuity (or mass conservation)

Uy =
dw

dx
Ux.

This makes it possible to resolve the second derivative of Uy as well:

−1

h

∂Uy

∂z

∣∣∣∣
z=0

= −1

h

∂Ux

∂z

∣∣∣∣
z=0

dw

dx
= −3

Ux

h2

dw

dx
. (3.10)

3.4. Dimensionless equations of motion

By combining the original equations of motion (3.7), (3.8) with our results from the
previous subsection (3.9), (3.10), we obtain a system with respect to w and Ux and
with differentiation in the x-direction only. By considering Ux = Ux(x) (flux condition,
(3.2)) and replacing h in (3.9) and (3.10) with havg = A/w = Q/(Uxw), we obtain a
system of two coupled ODEs with respect to w and Ux .

For further analysis, let us represent this system in dimensionless form. Our problem
has five dimensional parameters Q, g sin α, ρ, ν, γ and one dimensionless parameter
θ . A group of three dimensionally independent parameters can be constructed. Let
us define length and velocity scales L and V and dimensionless variables x∗, w∗ and
u∗ thus:

x = Lx∗, w = Lw∗, Ux = V u∗

Then
d

dx
=

d

dx∗

dx∗

dx
=

1

L

d

dx∗
and the governing equations become

d

dx∗

(
u∗

dw∗

dx∗

)
=

γL

QVρ
F∗ − 3νL

Q

A

h2

(
u∗

dw∗

dx∗

)

u∗
du∗

dx∗
=

Lg sin α

V 2
− 3νL3V

Q2
u3

∗w∗2
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There is one more length scale Z characterizing the vertical extent of the flow (z =Zz∗),
although after the z-dependence is removed by using the lubrication approximation,
it only remains implicitly present in the term A/h2 in the first equation:

A

h2
= A

1

(Zh∗)
2

=
Q

V u∗

1

(Zh∗)
2

=
Q

V Z2

1

u∗h2
∗
.

By setting the coefficient of F∗ in the first equation and the constant in the second
equation to unity, we resolve the length and velocity scale in the (x, y)-plane:

L =
ρ2Q2g sin α

γ 2
, V =

ρQg sin α

γ
.

Then the dimensionless coefficient of A/h2 can be also set to unity, yielding for Z

Z =

√
γ

ρg sin α
.

Thus Z is a modified capillary length. With the dimensionless coefficient of A/h2 thus
disposed of, we can rewrite this quantity as w2

∗u∗ and thus obtain the final form of
the system of equations

(u∗w
′
∗)

′ = F∗ − ΠIu
2
∗w

2
∗w

′
∗, (3.11)

u∗u
′
∗ = 1 − ΠIIu

3
∗w

2
∗, (3.12)

where (·)′ = d(·)/dx∗, and the dimensionless constants are

ΠI =
3νL

Q
=

3νρ2Qg sin α

γ 2
, (3.13)

ΠII =
3νL3V

Q2
=

3νρ7Q5(g sin α)4

γ 7
. (3.14)

Finally,

F∗ =
1

16

[
15

ΠI

ΠII

1

u∗w2
∗

− 5 tan θ

][
15

ΠI

ΠII

1

u∗w2
∗

+ tan θ

]
. (3.15)

Equations (3.11) and (3.12) now represent a coupled pair of ODEs for the
downstream velocity u∗ and stream width w∗. These equations explain the braids
as an oscillatory approach to a constant velocity and width far downstream. They
demonstrate the interaction between inertia, surface tension, and gravity as that
constant width solution is approached. The equations can be described qualitatively
as follows. As the fluid accelerates, it is drawn together by surface tension, but in
the acceleration process ‘too much’ speed is developed and the outside edges which
carry most of the fluid bounce on impact (see figure 2a inset). The fluid is then forced
outward until surface tension pull again forces a braid collapse and the process
repeats. The system (3.11), (3.12) can be solved numerically. The solution faithfully
predicts the length of the braids and the evolution of braid amplitude with downstream
distance throughout the parameter range we investigated. The r.m.s. of the difference
between predicted and experimentally measured width w(x) did not exceed 1.5%
(figure 3a). It is also noteworthy that the free surface shape h reconstructed from the
solution of (3.11), (3.12) bears a very strong resemblance to the actual free surface
observed in experiment (figure 3b, c). It is noteworthy that the contact angle used
in the numerical simulations was 54◦. Due to the hysteresis of contact angle, the
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Figure 3. Comparison of experiment and theory for braiding with parameter values: volume
flux q =12.2 cm3 s−1, inclination angle α =45◦, viscosity ν = 0.016 cm2 s−1. (a) Laboratory
experiment (photo) with the prediction of the theoretical model (red line) superimposed. Scale
in cm, flow direction is from left to right. (b) Close-up view (at 30◦ to the plane) of the first
braid. (c) Similar view of the first braid according to theory. In, the region corresponding to
the close-up is identified by a rectangle.

literature gives a 50◦–60◦ range for contact angles between water–glycerin mixtures
and acrylic substrate, hence the contact angle was used as a fitting parameter confined
within this range.

3.5. Critical points and stability

Further solution analysis may be done to determine critical points, examine
linearization around these points, and determine the associated eigenvalue equation
for the system (3.11), (3.12). This information may then be used to assess the solution
stability and analyse the bifurcation diagram of the system.

By inspection of (3.11), when the force F∗ goes to zero, the system has a critical
point, which leads to two possibilities (3.15):

ΠI

ΠIIu∗
=

w2
∗ tan θ

3
, (3.16)

ΠI

ΠIIu∗
= −w2

∗ tan θ

15
. (3.17)

It can be shown however that (3.17) leads to instability, thus, from (3.16) and (3.14),
for the stable critical point we have

uc =

√
tan(θ)

3ΠII

, wc =

√
tan(θ)

ΠIIu3
c

. (3.18)
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Figure 4. Experimental observations of braiding (�) and non-braiding (�) flow in terms of
parameters ΠI, ΠII. Solid line: theoretical transition boundary from non-braiding to braiding
flow; dotted line: power-law fit (see text).

3.6. Linearization and eigenvalue problem

Let us consider linearization near the stable critical point of the previous section

u∗ = uc + u1 exp(λx), w∗ = wc + w1 exp(λx),

where u1 and w1 are small.
Now, to determine the eigenvalues, let us consider F∗ as set by (3.15), and

G∗ = 1 − ΠIIu
3
∗w

2
∗.

In terms of F∗, G∗ and their derivatives, the eigenvalue problem can be formulated as

det




(
ucλ

2 − ∂F∗

∂w∗
+ 4ΠIu

2
cw

2
cλ

)
−∂F∗

∂u∗

−∂G∗

∂w∗
ucλ − ∂G∗

∂u∗


 = 0. (3.19)

To find the eigenvalues, we need to solve a cubic equation in λ. The real part of
λ is negative for all parameter values. A pair of complex conjugate eigenvalues
corresponds to a solution with oscillating width, i.e. braiding. After (3.19) is solved
numerically, the braid length can be determined as 2π/Imλ. When the braid length
goes to infinity, i.e. Imλ → 0, the stream approaches the rivulet solution (figure 2b,
Davis 1980; Perazzo & Gratton 2004).

3.7. Bifurcation

The bifurcation diagram in the (ΠI, ΠII)-plane (figure 4 with solid line showing the
transition boundary, also see Mertens, Putkaradze & Vorobieff 2004) characterizes
the transition from braiding to rivulet-like flow structure, i.e. transition to infinite
braid length as Imλ → 0, in good agreement with experiment. The transition line in
the parameter range we investigated could be approximated by a power-law fit of
ΠII = 4.07Π1.89

I .
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4. Conclusion
We have created a simple model which nevertheless presents an accurate description

of the processes which create fluid braids in a flow down an inclined plane
with meandering suppressed by maintaining a constant flow rate. The braiding
phenomenon is best described as a battle for dominance in the flow structure between
the surface tension of the fluid and the inertia of the peripheral zones of the flow
under the influence of gravity. By taking advantage of averaging methods for thin
film flows, lubrication approximations, and the idea of a constant contact angle, this
model provides a simple method by which the flow can be predicted for a given
partially wetting surface–fluid combination.

We see that for smaller angles of inclination the braids become wider and shorter.
As viscosity is increased, the dissipative terms begin to dominate and braids eventually
disappear. Increased flow rate increases braid length, and so does increased inclination
angle, while decreased flow rate will eventually lead to rivulet solutions.

A bifurcation in the parameter space of our model corresponds to the transition
between braiding and rivulet flows in experiment. Our model also accurately predicts
the braid length, as well as the overall flow morphology.

It is also important to note that earlier assumptions that meandering could not be
eliminated in the immediate downstream flow are corrected, and in doing so a new
inherent instability (braiding) is described.
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